Sorting by Reversals, Generalized Transpositions, and Translocations Using Permutation Groups
نویسندگان
چکیده
In this article, we consider the problem of sorting a linear/circular, multi-chromosomal genome by reversals, block-interchanges (i.e., generalized transpositions), and translocations (including fusions and fissions) where the used operations can be weighted differently, which aims to find a sequence of reversal, block-interchange, and translocation operations such that the sum of these operation weights in the sequence is minimum. It is known that this sorting problem can be solved in polynomial time on the basis of breakpoint graphs, when block-interchanges are weighted 2 (or >or=3) and the others are weighted 1. In this study, we design a novel and easily implemented algorithm for this problem by utilizing the permutation group theory in algebra.
منابع مشابه
A Simpler 1.5-Approximation Algorithm for Sorting by Transpositions
A common approach in comparative genomics is to compare the order of appearance of orthologous genes in different genomes. Genomes are represented by permutations, where each element stands for a gene. Circular genomes (such as bacterial and mitochondrial genomes) are represented by circular permutations. The basic task is, given two permutations, to find a shortest sequence of rearrangement op...
متن کاملGENESIS: genome evolution scenarios
SUMMARY We implemented a software tool called GENESIS for three different genome rearrangement problems: Sorting a unichromosomal genome by weighted reversals and transpositions (SwRT), sorting a multichromosomal genome by reversals, translocations, fusions and fissions (SRTl), and sorting a multichromosomal genome by weighted reversals, translocations, fusions, fissions and transpositions (SwR...
متن کاملA 2-Approximation Algorithm for Genome Rearrangements by Reversals and Transpositions
Recently, a new approach to analyze genomes evolving was proposed which is based on comparison of gene orders versus traditional comparison of DNA sequences (Sanko et al, 1992). The approach is based on the global rearrangements (e.g., inversions and transpositions of fragments). Analysis of genomes evolving by inversions and transpositions leads to a combinatorial problem of sorting by reversa...
متن کاملApproximation Algorithm for Sorting by Reversals and Transpositions
Genome rearrangement algorithms are powerful tools to analyze gene orders in molecular evolution. Analysis of genomes evolving by reversals and transpositions leads to a combinatorial problem of sorting by reversals and transpositions, the problem of finding a shortest sequence of reversals and transpositions that sorts one genome into the other. In this paper we present a (4 − 2 k )-approximat...
متن کاملSorting by Weighted Reversals, Transpositions, and Inverted Transpositions
During evolution, genomes are subject to genome rearrangements that alter the ordering and orientation of genes on the chromosomes. If a genome consists of a single chromosome (like mitochondrial, chloroplast, or bacterial genomes), the biologically relevant genome rearrangements are (1) inversions--also called reversals--where a section of the genome is excised, reversed in orientation, and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 17 5 شماره
صفحات -
تاریخ انتشار 2010